Evaluation of Water Treatment Efficiency of Full-Scale Slow Sand Filtration Process: Comparison of Summer and Winter Season

Author:

Bae Eun-YoungORCID,Lee YujinORCID,Lee HyejinORCID,Son HeejongORCID,An ByungryulORCID

Abstract

Objectives : The objective of this study is to evaluate the feasibility of sustainable operation in a conventional full-scale slow sand filter process.Methods : A slow sand filtration process was operated in small scale water treatment plants for valley water. The water quality such as particle matter, dissolved organic matter, the number of bacteria, and disinfection by-product (DBP) were monitored at four designated points once a week and was compared during summer (July-August) and winter season (December-January).Results and Discussion : Although the number of particle matter in summer was higher than in winter by 39% (2.91×10<sup>4</sup> /mL), particle matter in slow sand filter process was removed by 99% regardless of season (temperature). The removal efficiency of dissolved organic carbon (DOC) and UV<sub>254</sub> was higher in summer than in winter by 15% and 21%, respectively. In addition, concerning the organic fraction, higher molecular weight led to higher removal efficiency in the following sequence: BP (biopolymer, MW: 20,000 g/mol) > HS(humic substances, MW : 1,000~20,000 g/mol) > BB(building blocks, MW : 300~500 g/mol) > LMWs(low molecular weights, MW : 350 g/mol. The concentration of trihalomethanes (THMs) and haloacetic acids (HAAs), indicator of DBP, were detected at 12.2 and 9.4 μg/L in summer and 8.1 and 6.3 μg/L in winter, respectively, which would be considered very low concentration related to the drinking water regulation of 100 μg/L. Finally, the active bacteria was removed up to 93 and 92% in summer and winter, respectively.Conclusion : The feasibility of a slow filtration process was evaluated to compare particle and dissolved matter in summer and winter operation. Despite a 39% increase in particle matter in summer, the removal efficiency was maintained at 98% in summer and winter. Due to the increased activation of biofilm in summer, the removal of DOC and UV<sub>254</sub> was higher in summer than winter by 15 and 21%, respectively. The significant low concentration of THMs and HAAs, regardless of season, would be negligible. In addition, achieving over 92% removal of activated bacteria secured the biological safety. These stable operations ensure that slow filtration process is effective in controlling of water quality.

Publisher

Korean Society of Environmental Engineering

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3