Biological aspects of slow sand filtration: past, present and future

Author:

Haig S. J.1,Collins G.2,Davies R. L.3,Dorea C. C.4,Quince C.1

Affiliation:

1. School of Engineering, Rankine Building, University of Glasgow, G12 8LT, UK

2. School of Natural Sciences, National University of Ireland, University Road, Galway, Ireland

3. School of Infection, and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, G12 8TA, UK

4. Département génie civil et génie des eaux/Civil and Water Engineering, Université Laval, Québec (QC), G1V 0A6, Canada

Abstract

For over 200 years, slow sand filtration (SSF) has been an effective means of treating water for the control of microbiological contaminants in both small and large community water supplies. However, such systems lost popularity to rapid sand filters mainly due to smaller land requirements and less sensitivity to water quality variations. SSF is still a particularly attractive process because its operation does not require chemicals or electricity. It can achieve a high level of treatment, which is mainly attributed to naturally-occurring, biochemical processes in the filter. Several microbiologically-mediated purification mechanisms (e.g. predation, scavenging, adsorption and bio-oxidation) have been hypothesised or assumed to occur in the biofilm that forms in the filter but these have not yet been comprehensively verified. Thus, SSFs are operated as ‘black boxes’ and knowledge gaps pertaining to the underlying ecology and ecophysiology limit the design and optimisation of the technology. The objective of this review is to outline the biological aspects of SSF in to the context of recent developments in molecular microbial ecology.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3