A mixed culture performing nitrite-dependent anaerobic methane oxidation and the nitrite removal mechanism revealed by high-throughput sequencing

Author:

Yan Han,Li JianzhengORCID,Meng Jia,Wang Xin,Tang Lianggang,Kumar Jha Avinash

Abstract

Nitrite-dependent anaerobic methane oxidation (n-DAMO) has been regarded as a promising effective approach to nitrogen removal from wastewater. However, n-DAMO bacteria are very difficult to be enriched in biological wastewater treatment processes. An anaerobic sequencing batch reactor (AnSBR) was introduced in the present study for the enrichment of n-DAMO bacteria with cornfield soil as inoculum. Fed with nitrite (NO2−) and methane as the specific substrates, a NO2− load removal as high as 46.16 mg/(L·d) was obtained in the AnSBR since the 232nd day of enrichment culturing, though the relative abundance of Candidatus Methylomirabilis referring to n-DAMO bacteria was 2.37% in the acclimatized mixed culture. High-throughput sequencing of the obtained mixed culture revealed that the community structure was complex with the coexistence of n-DAMO bacteria, methanotrophs, heterotrophic denitrifying bacteria and hydrolytic fermentation bacteria. Analysis of interactions among the prevalent microbial populations suggested that Candidatus Methylomirabilis had played a key role in the metabolic network of the mixed culture. The research work presented a novel approach to the enrichment of n-DAMO bacteria from cornfield soil and was helpful in understanding the role of n-DAMO bacteria in complex matrices.

Funder

National Natural Science Foundation of China

State Key Laboratory of Urban Water Resource and Environment

Harbin Institute of Technology

Publisher

Korean Society of Environmental Engineering

Subject

Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3