Anomaly Detection Using Temporal Data Mining in a Smart Home Environment

Author:

Jakkula V.,Cook D. J.

Abstract

Summary Objectives: To many people, home is a sanctuary. With the maturing of smart home technologies, many people with cognitive and physical disabilities can lead independent lives in their own homes for extended periods of time. In this paper, we investigate the design of machine learning algorithms that support this goal. We hypothesize that machine learning algorithms can be designed to automatically learn models of resident behavior in a smart home, and that the results can be used to perform automated health monitoring and to detect anomalies. Methods: Specifically, our algorithms draw upon the temporal nature of sensor data collected in a smart home to build a model of expected activities and to detect unexpected, and possibly health-critical, events in the home. Results: We validate our algorithms using synthetic data and real activity data collected from volunteers in an automated smart environment. Conclusions: The results from our experiments support our hypothesis that a model can be learned from observed smart home data and used to report anomalies, as they occur, in a smart home.

Publisher

Georg Thieme Verlag KG

Subject

Health Information Management,Advanced and Specialized Nursing,Health Informatics

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the accuracy of Anomaly Detection in Multimodal Sensors using 1D-CNN;Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments;2024-06-26

2. A Comprehensive Review of Machine Learning Approaches for Anomaly Detection in Smart Homes: Experimental Analysis and Future Directions;Future Internet;2024-04-19

3. Internet of robotic things for independent living: Critical analysis and future directions;Internet of Things;2024-04

4. Anomaly Detection using PCA in Time Series Data;2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI);2024-03-14

5. Anomaly Detection in Smart Houses for Healthcare;SN Computer Science;2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3