An Enhancement in Single-Image Dehazing Employing Contrastive Attention over Variational Auto-Encoder (CA-VAE) Method

Author:

Vishwakarma Sandeep1,Pillai Anuradha1,Punj Deepika1

Affiliation:

1. Department of Computer Engineering, J.C. Bose University of Science and Technology, YMCA, Faridabad, India.

Abstract

Hazy images and videos have low contrast and poor visibility. Fog, ice fog, steam fog, smoke, volcanic ash, dust, and snow are all terrible conditions for capturing images and worsening color and contrast. Computer vision applications often fail due to image degradation. Hazy images and videos with skewed color contrasts and low visibility affect photometric analysis, object identification, and target tracking. Computer programs can classify and comprehend images using image haze reduction algorithms. Image dehazing now uses deep learning approaches. The observed negative correlation between depth and the difference between the hazy image’s maximum and lowest color channels inspired the suggested study. Using a contrasting attention mechanism spanning sub-pixels and blocks, we offer a unique attention method to create high-quality, haze-free pictures. The L*a*b* color model has been proposed as an effective color space for dehazing images. A variational auto-encoder-based dehazing network may also be utilized for training since it compresses and attempts to reconstruct input images. Estimating hundreds of image-impacting characteristics may be necessary. In a variational auto-encoder, fuzzy input images are directly given a Gaussian probability distribution, and the variational auto-encoder estimates the distribution parameters. A quantitative and qualitative study of the RESIDE dataset will show the suggested method's accuracy and resilience. RESIDE’s subsets of synthetic and real-world single-image dehazing examples are utilized for training and assessment. Enhance the structural similarity index measure (SSIM) and peak signal-to-noise ratio metrics (PSNR).

Publisher

Ram Arti Publishers

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3