Dehazing Using Color-Lines

Author:

Fattal Raanan1

Affiliation:

1. The Hebrew University of Jerusalem, Jerusalem, Israel

Abstract

Photographs of hazy scenes typically suffer having low contrast and offer a limited visibility of the scene. This article describes a new method for single-image dehazing that relies on a generic regularity in natural images where pixels of small image patches typically exhibit a 1D distribution in RGB color space, known as color-lines. We derive a local formation model that explains the color-lines in the context of hazy scenes and use it for recovering the scene transmission based on the lines' offset from the origin. The lack of a dominant color-line inside a patch or its lack of consistency with the formation model allows us to identify and avoid false predictions. Thus, unlike existing approaches that follow their assumptions across the entire image, our algorithm validates its hypotheses and obtains more reliable estimates where possible. In addition, we describe a Markov random field model dedicated to producing complete and regularized transmission maps given noisy and scattered estimates. Unlike traditional field models that consist of local coupling, the new model is augmented with long-range connections between pixels of similar attributes. These connections allow our algorithm to properly resolve the transmission in isolated regions where nearby pixels do not offer relevant information. An extensive evaluation of our method over different types of images and its comparison to state-of-the-art methods over established benchmark images show a consistent improvement in the accuracy of the estimated scene transmission and recovered haze-free radiances.

Funder

Israel Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Cited by 736 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3