Brain Tumor Detection and Localization: An Inception V3 - Based Classification Followed By RESUNET-Based Segmentation Approach

Author:

Rastogi Deependra1,Johri Prashant1,Tiwari Varun2

Affiliation:

1. School of Computing Science and Engineering, Galgotias University, Greater Noida, Uttar Pradesh, India.

2. Department of Computer Science and Engineering, Manipal University Jaipur, Rajasthan, Uttar Pradesh, India.

Abstract

Adults and children alike are at risk from brain tumors. Accurate and prompt detection, on the other hand, can save lives. This research focuses on the identification and localization of brain tumors. Many research has been available on the analysis and classification of brain tumors, but only a few have addressed the issue of feature engineering. To address the difficulties of manual diagnostics and traditional feature-engineering procedures, new methods are required. To reliably segment and identify brain tumors, an automated diagnostic method is required. While progress is being made, automated brain tumor diagnosis still confront hurdles such as low accuracy and a high rate of false-positive outcomes. Deep learning is used to analyse brain tumors in the model described in this work, which improves classification and segmentation. Using Inception-V3 and RESUNET, deep learning is pragmatic for tumor classification and segmentation. On the Inception V3 model, add one extra layer as a head for classifying. The outcomes of these procedures are compared to those of existing methods. The test accuracy of the Inception-V3 with extra classification layer model is 0.9996, while the loss value is 0.0025. The model tversky value for localization and detection is 0.9688, while the model accuracy is 0.9700.

Publisher

Ram Arti Publishers

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain tumor detection and classification using CNN and resnet-50;2024 International Conference on Expert Clouds and Applications (ICOECA);2024-04-18

2. Optimizing Inception-V3 for Brain Tumor Classification Using Hybrid Precision Training and Cosine Annealing Learning Rate;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

3. Survival and grade of the glioma prediction using transfer learning;PeerJ Computer Science;2023-12-08

4. Brain Tumor Classification using MR Images and Transfer Learning;2023 2nd International Conference on Edge Computing and Applications (ICECAA);2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3