Abstract
"Here is a sample of the results proved in this paper: Let $f:{\bf R}\to {\bf R}$ be a continuous function, let $\rho>0$ and let $\omega:[0,\rho[\to [0,+\infty[$ be a continuous increasing function such that $$\lim\limits_{\xi\to \rho^-}\ds\int_0^{\xi}\omega(x)dx=+\infty.$$ Consider $C^0([0,1])\times C^0([0,1])$ endowed with the norm $$\|(\alpha,\beta)\|=\int_0^1|\alpha(t)|dt+\int_0^1|\beta(t)|dt.$$ Then, the following assertions are equivalent: \noindent $(a)$ the restriction of $f$ to $\left [-{{\sqrt{\rho}}\over {2}},{{\sqrt{\rho}}\over {2}} \right ]$ is not constant; \noindent $(b)$ for every convex set $S\subseteq C^0([0,1])\times C^0([0,1])$ dense in $C^0([0,1])\times C^0([0,1])$, there exists $(\alpha,\beta)\in S$ such that the problem $$\left\{\begin{array}{l} -\omega\left(\displaystyle\int_0^1|u'(t)|^2dt\right)u'' =\beta(t)f(u)+\alpha(t) \mbox{ in } [0,1]\\ u(0)=u(1)=0\\ \displaystyle\int_0^1|u'(t)|^2dt<\rho \end{array}\right.$$ has at least two classical solutions."
Reference11 articles.
1. "1. Alimov, A.R., Tsar'kov, I.G., Connectedness and solarity in problems of best and near-best approximation, Russian Math. Surveys, 71(2016), 1-77.
2. 2. Balagansk˘ıi, V.S., Vlasov, L.P., The problem of the convexity of Chebyshev sets, Russian Math. Surveys, 51(1996), 1127-1190.
3. 3. Efimov, N.V., Ste˘ckin, S.B., Approximative compactness and Chebyshev sets, Dokl. Akad. Nauk SSSR, 140(1961), 522-524.
4. 4. Faraci, F., Iannizzotto, A., An extension of a multiplicity theorem by Ricceri with an application to a class of quasilinear equations, Studia Math., 172(2006), 275-287.
5. 5. Faraci, F., Iannizzotto, A., Well posed optimization problems and nonconvex Chebyshev sets in Hilbert spaces, SIAM J. Optim., 19(2008), 211-216.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献