Affiliation:
1. Department of Mathematics and Informatics, University of Catania , Viale A. Doria 6 , 95125 Catania , Italy
Abstract
Abstract
Let
Ω
⊂
R
n
\Omega \subset {{\bf{R}}}^{n}
be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let
q
∈
]
0
,
1
[
q\in ]0,1{[}
,
α
∈
L
∞
(
Ω
)
\alpha \in {L}^{\infty }\left(\Omega )
, with
α
>
0
\alpha \gt 0
, and
k
∈
N
k\in {\bf{N}}
. Then, the problem
−
tan
∫
Ω
∣
∇
u
(
x
)
∣
2
d
x
Δ
u
=
α
(
x
)
u
q
in
Ω
u
>
0
in
Ω
u
=
0
on
∂
Ω
(
k
−
1
)
π
<
∫
Ω
∣
∇
u
(
x
)
∣
2
d
x
<
(
k
−
1
)
π
+
π
2
\left\{\begin{array}{ll}-\tan \left(\mathop{\displaystyle \int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x\right)\Delta u=\alpha \left(x){u}^{q}\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega \\ u\gt 0\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega \\ u=0\hspace{1.0em}& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial \Omega \\ \left(k-1)\pi \lt \mathop{\displaystyle \int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x\lt \left(k-1)\pi +\frac{\pi }{2}\hspace{1.0em}\end{array}\right.
has a unique weak solution
u
˜
\tilde{u}
, which is the unique global minimum in
H
0
1
(
Ω
)
{H}_{0}^{1}\left(\Omega )
of the functional
u
→
1
2
tan
∫
Ω
∣
∇
u
˜
(
x
)
∣
2
d
x
∫
Ω
∣
∇
u
(
x
)
∣
2
d
x
−
1
q
+
1
∫
Ω
α
(
x
)
∣
u
+
(
x
)
∣
q
+
1
d
x
,
u\to \frac{1}{2}\tan \left(\mathop{\int }\limits_{\Omega }| \nabla \tilde{u}\left(x){| }^{2}{\rm{d}}x\right)\mathop{\int }\limits_{\Omega }| \nabla u\left(x){| }^{2}{\rm{d}}x-\frac{1}{q+1}\mathop{\int }\limits_{\Omega }\alpha \left(x)| {u}^{+}\left(x){| }^{q+1}{\rm{d}}x,
where
u
+
=
max
{
0
,
u
}
{u}^{+}=\max \left\{0,u\right\}
.
Reference11 articles.
1. C. O. Alves and F. J. S. A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, Comm. Appl. Nonlinear Anal. 8 (2001), 43–56.
2. H. Brezis and L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. 10 (1986), 55–64.
3. G. M. Figueiredo and A. Suárez, Some remarks on the comparison principle in Kirchhoff equations, Rev. Mat. Iberoam. 34 (2018), 609–620.
4. G. M. Figueiredo, C. Morales-Rodrigo, J. R. Santos-Júnior, and A. Suárez, Study of a nonlinear Kirchhoff equation with non-homogeneous material, J. Math. Anal. Appl. 416 (2014), 597–608.
5. P. Pucci and V. D. Rădulescu, Progress in nonlinear Kirchhoff problems, Nonlinear Anal. 186 (2019), 1–5.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献