Multi-scale analysis of shear behaviour of crushable granular sand under general stress conditions

Author:

Shi Ke1,Zhu Fan2ORCID,Zhao Jidong1ORCID

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong, P. R. China.

2. Kyoto University, Kyoto, Japan; formerly Hong Kong University of Science and Technology, Hong Kong, P. R. China.

Abstract

Grain crushing underpins key mechanical behaviours of granular materials. A variety of factors, including grading, particle shapes and loading conditions, have been recognised to affect the crushability of grains and the overall behaviour of a granular material. Among them, the role of intermediate principal stress in a general stress condition on the shear behaviour of crushable granular sand remains less understood, owing to the scarcity of experimental data and analytical tools available. In this paper, a multi-scale computational approach is employed to investigate the shear behaviour of crushable granular sand under general stress conditions with varying intermediate principal stresses and confining pressures. The computational approach features multi-scale coupling between non-smooth contact dynamics and peridynamics, and offers a rigorous way to consider the intertwined evolution of particle size and shape during the process of grain crushing. The numerical study helps to quantify comprehensively and analyse the grain crushing-induced changes of macro- and micro-scale material behaviours including strength, deformability, particle size and shape evolution, particle-scale forces and contact conditions, and the development of anisotropy. The competition between a void-filling mechanism due to grain size change and enhanced friction and interlocking due to grain shape change in dictating the deformation of crushable sand is further discussed. The findings offer insights into the complex behaviours of crushable granular materials under general stress conditions and facilitate future development of physics-based constitutive theories on crushable sand.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3