The mechanics of brittle granular materials with coevolving grain size and shape

Author:

Buscarnera Giuseppe1ORCID,Einav Itai2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA

2. School of Civil Engineering, The University of Sydney, Sydney 2006, Australia

Abstract

The influence of particle shape on the mechanics of sand is widely recognized, especially in mineral processing and geomechanics. However, most existing continuum theories for engineering applications do not encompass the morphology of the grains and its evolution during comminution. Similarly, the relatively few engineering models accounting for grain-scale processes tend to idealize particles as spheres, with their diameters considered as the primary and sole geometric descriptor. This paper inspires a new generation of constitutive laws for crushable granular continua with arbitrary, yet evolving, particle morphology. We explore the idea of introducing multiple grain shape descriptors into Continuum Breakage Mechanics (CBM), a theory originally designed to track changes in particle size distributions during confined comminution. We incorporate the influence of these descriptors on the elastic strain energy potential and treat them as dissipative state variables. In analogy with the original CBM, and in light of evidence from extreme fragmentation in nature, the evolution of the additional shape descriptors is postulated to converge towards an attractor. Comparisons with laboratory experiments, discrete element analyses and particle-scale fracture models illustrate the encouraging performance of the theory. The theory provides insights into the feedback among particle shape, compressive yielding and inelastic deformation in crushable granular continua. These results inspire new questions that should guide future research into crushable granular systems using particle-scale imaging and computations.

Funder

U.S. Army

the Australian Research Council

U.S. Department of Energy

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3