Exploring the micromechanics of non-active clays by way of virtual DEM experiments

Author:

Pagano Arianna Gea1ORCID,Magnanimo Vanessa2ORCID,Weinhart Thomas2ORCID,Tarantino Alessandro1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK.

2. Multiscale Mechanics Group, University of Twente, Enschede, the Netherlands.

Abstract

The micromechanical behaviour of clays cannot be investigated experimentally in a direct fashion due to the small size of clay particles. An insight into clay mechanical behaviour at the particle scale can be gained by way of virtual experiments based on the discrete-element method (DEM). So far, most DEM models for clays have been designed on the basis of theoretical formulations of inter-particle interactions, with limited experimental evidence of their actual control over the clay's macroscopic response. This paper presents a simplified two-dimensional DEM framework where contact laws were inferred from indirect experimental evidence at the microscale provided by Pedrotti and Tarantino in 2017 (particle-to-particle interactions were probed experimentally by varying the pore-fluid chemistry, and the resulting effect was explored by way of scanning electron microscopy and mercury intrusion porosimetry). The proposed contact laws were successfully tested against their ability to reproduce qualitatively the compression behaviour of clay with pore fluids of varying pH and dielectric permittivity. The DEM framework presented in this work was intentionally kept simple in order to demonstrate the robustness of the micromechanical concept underlying the proposed contact laws. It is anticipated that a satisfactory quantitative prediction would be achieved by moving to a three-dimensional formulation, by considering polydisperse specimens and by refining the contact laws.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3