Experimental micromechanics: grain-scale observation of sand deformation

Author:

Andò E.1,Hall S. A.2,Viggiani G.1,Desrues J.1,Bésuelle P.1

Affiliation:

1. Grenoble-INP/UJF-Grenoble 1/CNRS UMR 5521, Laboratoire 3SR, 38041 Grenoble, France

2. Division of Solid Mechanics, Lund University, Lund, Sweden and European Spallation Source AB, Lund, Sweden

Abstract

Strain localisation plays a key role in the deformation of granular materials. Such localisation involves bands of just a few grains wide, which dominate the material's macroscopic response. This grain-scale phenomenon presents challenges for continuum modelling, which is the rationale behind models that explicitly take micro-scales into account. These in turn require micro-scale experimental analysis. In this work, X-ray tomography is used to image a small sample of oolitic sand while it deforms under triaxial compression. Grains are followed with a technique combining recent developments in image correlation and particle tracking. From these rich data, the evolution of the material in a subvolume of a thousand grains inside the sample (which contains 53 000 grains) is presented. The subvolume is chosen to lie inside the shear band that appears at the sample scale. Three-dimensional (3D) grain kinematics are analysed in three increments: the beginning of the test, the peak of the sample's macroscopic axial stress response and the residual stress state. When the sample's deformation is homogeneous (increment one) or fully localised (increment three), the kinematics of the grains in the subvolume appear to be representative of the kinematics occurring at the sample scale, allowing micro-mechanical observations to be made. In the transition from homogeneous to localised deformation (increment two), however, the scale of observation requires a zoom out of the subvolume to the sample scale in order to capture the complex mechanisms at play.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3