Long-term hydraulic performance of geotextiles filtering recycled materials

Author:

Odabasi E.1,Dayioglu A. Y.2,Demir Yetis A.3,Aydilek A. H.4

Affiliation:

1. Staff Engineer, Department of State Hydraulic Works, 06100, Ankara, Turkey,

2. Assistant Professor, Department of Civil Engineering, Istanbul Technical University, Istanbul, 34469, Turkey,

3. Assistant Professor, Department of Medical Services and Techniques, Bitlis Eren University, Bitlis, 13100, Turkey,

4. Professor, Department of Civil and Environmental Engineering, University of Maryland, 1163 Glenn Martin Hall, College Park, MD 20742, USA,(corresponding author)

Abstract

Use of recycled materials instead of earthen materials is one way to improve the sustainability of highway infrastructure. Since geotextile filters and separators are used in such construction schemes, hydraulic compatibility of geotextile filters with recycled materials and their long-term performance is essential. A series of long-term filtration (LTF) tests were performed to evaluate the hydraulic compatibility of several woven and nonwoven geotextiles with four recycled materials commonly used in construction (recycled concrete aggregate, recycled asphalt pavement, foundry sand, and recycled asphalt shingle). Upon completion of the LTF tests, grain size analyses, permittivity tests, image analyses, and piping measurements were conducted to investigate the clogging and retention behavior of the geotextiles. The results indicated that majority of the recycled materials tested were compatible with the nonwoven and woven geotextiles. Excessive piping was not observed even under relatively high hydraulic gradients. Permittivity and percent open area were the main parameters that influenced the retention performance of the nonwoven and woven geotextiles, respectively. The success of the existing criteria in predicting the filtration performance was inconsistent, suggesting that a detailed parametric study was needed to propose new filter criteria for these materials.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3