Experimental study on filtration performance of geotextile filter used in emergency rescue of dike piping

Author:

Feng Di1,Jiang Shi Lai1,Liu Sheng2ORCID

Affiliation:

1. College of Civil and Transportation Engineering, Hohai University, Nanjing, China

2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, China

Abstract

Geotextiles, as a type of common filtration material, have broad prospects in emergency rescue of dike backward erosion piping (BEP). To investigate the filtration performance of geotextile in BEP emergency rescue, several experiments were conducted using nonwoven and woven geotextiles to simulate the process of rescuing BEP with geotextiles. The influence of geotextile specifications and types on hydraulic compatibility of the filter system was analyzed, and the clogging mechanism of geotextile during dealing with BEP was revealed at a microscopic level. The results showed that the nonwoven geotextile filter with an equivalent pore size of 0.103 mm had a gradient ratio value of less than 3, and it had a highest flow rate of 260 mL/min. Increasing the thickness and pore size of nonwoven geotextiles within a certain range helped enhance their anti-clogging ability. The main mechanism of clogging in nonwoven geotextiles was the deposition of fine sand particles on their surface, forming a layer of low permeability soil. Plain woven geotextiles experienced severe clogging with a 42% reduction in flow rate, and it was not suitable for rescuing BEP. The clogging mechanism of woven geotextile involved the blocking of horizontal water passages by fine sand particles.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3