Real-time traffic event detection using Twitter data

Author:

Jones Angelica Salas1,Georgakis Panagiotis1,Petalas Yannis1,Suresh Renukappa1

Affiliation:

1. Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK

Abstract

Incident detection is an important component of intelligent transport systems and plays a key role in urban traffic management and provision of traveller information services. Due to its importance, a wide number of researchers have developed different algorithms for real-time incident detection. However, the main limitation of existing techniques is that they do not work well in conditions where random factors could influence traffic flows. Twitter is a valuable source of information as its users post events as they happen or shortly after. Therefore, Twitter data have been used to predict a wide variety of real-time outcomes. This paper aims to present a methodology for a real-time traffic event detection using Twitter. Tweets are obtained through the Twitter streaming application programming interface in real time with a geolocation filter. Then, the author used natural language processing techniques to process the tweets before they are fed into a text classification algorithm that identifies if it is traffic related or not. The authors implemented their methodology in the West Midlands region in the UK and obtained an overall accuracy of 92·86%.

Publisher

Thomas Telford Ltd.

Subject

Public Administration,Safety Research,Transportation,Building and Construction,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3