Deep Learning Ensemble Model for the Prediction of Traffic Accidents Using Social Media Data

Author:

Gutierrez-Osorio CamiloORCID,González Fabio A.ORCID,Pedraza Cesar AugustoORCID

Abstract

Traffic accidents are a major concern worldwide, since they have a significant impact on people’s safety, health, and well-being, and thus, they constitute an important field of research on the use of state-of-the-art techniques and algorithms to analyze and predict them. The study of traffic accidents has been conducted using the information published by traffic entities and road police forces, but thanks to the ubiquity and availability of social media platforms, it is possible to have detailed and real-time information about road accidents in a given region, which allows for detailed studies that include unrecorded road accident events. The focus of this paper is to propose a model to predict traffic accidents using information gathered from social media and open data, applying an ensemble Deep Learning Model, composed of Gated Recurrent Units and Convolutional Neural Networks. The results obtained are compared with baseline algorithms and results published by other researchers. The results show promising outcomes, indicating that in the context of the problem, the proposed ensemble Deep Learning model outperforms the baseline algorithms and other Deep Learning models reported by literature. The information provided by the model can be valuable for traffic control agencies to plan road accident prevention activities.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3