Multitask Learning for Crash Analysis: A Fine-Tuned LLM Framework Using Twitter Data

Author:

Jaradat Shadi12ORCID,Nayak Richi2ORCID,Paz Alexander3ORCID,Ashqar Huthaifa I.45ORCID,Elhenawy Mohammad12ORCID

Affiliation:

1. Centre for Accident Research & Road Safety-Queensland, Queensland University of Technology, Brisbane, QLD 4000, Australia

2. Centre of Data Science, Queensland University of Technology, Brisbane, QLD 4000, Australia

3. School of Civil Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia

4. Civil Engineering Department, Arab American University, 13 Zababdeh, Jenin P.O. Box 240, Palestine

5. Artificial Intelligence Program, Fu Foundation School of Engineering and Applied Science, Columbia University, 500 W 120th St, New York, NY 10027, USA

Abstract

Road traffic crashes (RTCs) are a global public health issue, with traditional analysis methods often hindered by delays and incomplete data. Leveraging social media for real-time traffic safety analysis offers a promising alternative, yet effective frameworks for this integration are scarce. This study introduces a novel multitask learning (MTL) framework utilizing large language models (LLMs) to analyze RTC-related tweets from Australia. We collected 26,226 traffic-related tweets from May 2022 to May 2023. Using GPT-3.5, we extracted fifteen distinct features categorized into six classification tasks and nine information retrieval tasks. These features were then used to fine-tune GPT-2 for language modeling, which outperformed baseline models, including GPT-4o mini in zero-shot mode and XGBoost, across most tasks. Unlike traditional single-task classifiers that may miss critical details, our MTL approach simultaneously classifies RTC-related tweets and extracts detailed information in natural language. Our fine-tunedGPT-2 model achieved an average accuracy of 85% across the six classification tasks, surpassing the baseline GPT-4o mini model’s 64% and XGBoost’s 83.5%. In information retrieval tasks, our fine-tuned GPT-2 model achieved a BLEU-4 score of 0.22, a ROUGE-I score of 0.78, and a WER of 0.30, significantly outperforming the baseline GPT-4 mini model’s BLEU-4 score of 0.0674, ROUGE-I score of 0.2992, and WER of 2.0715. These results demonstrate the efficacy of our fine-tuned GPT-2 model in enhancing both classification and information retrieval, offering valuable insights for data-driven decision-making to improve road safety. This study is the first to explicitly apply social media data and LLMs within an MTL framework to enhance traffic safety.

Funder

Queensland University of Technology

Centre of Data Science at QUT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3