Rubber powder–polymer combined stabilization of South Australian expansive soils

Author:

Soltani A.1ORCID,Deng A.2,Taheri A.2,Mirzababaei M.3

Affiliation:

1. School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA 5005, Australia,(corresponding author)

2. School of Civil, Environmental and Mining Engineering, The University of Adelaide, Adelaide, SA 5005, Australia,

3. School of Engineering and Technology, Central Queensland University, Melbourne, VIC 3000, Australia,

Abstract

This study examines the combined capacity of rubber powder inclusion and polymer treatment in solving the swelling problem of South Australian expansive soils. The rubber powder was incorporated into the soil at three different rubber contents (by weight) of 10%, 20% and 30%. The preliminary testing phase consisted of a series of consistency limits and free swell ratio tests, the results of which were analyzed to arrive at the optimum polymer concentration. The main test program included standard Proctor compaction, oedometer swell–compression, soil reactivity (shrink–swell index), cyclic wetting and drying, crack intensity, and micro-structure analysis by means of the scanning electron microscopy (SEM) technique. The improvement in swelling potential and swelling pressure was dependent on the rubber content, with polymer–treated mixtures holding a notable advantage over similar untreated cases. A similar dependency was also observed for the crack intensity factor and the shrink–swell index. The beneficial effects of rubber inclusion were compromised under the cyclic wetting and drying condition. However, this influence was eliminated where the rubber powder was paired with the polymer agent. A rubber inclusion of 20%, preferably paired with 0.2 g/l polymer, was suggested to effectively stabilize South Australian expansive soils.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3