Ternary medium constitutive model of frozen rubber-reinforced expansive soil

Author:

Yang Z.1,Cheng Z.2,Cai G.3,Ling X.4,Shi W.5

Affiliation:

1. Professor, Department of Civil Engineering, Qingdao University of Technology, Qingdao, China,(corresponding author)

2. PhD in Geotechnical Engineering, Department of Environmental Science and Engineering, Ocean University of China, Qingdao, China,

3. Professor, College of Civil Engineering, Anhui Jianzhu University, Anhui, China,

4. Professor, Department of Civil Engineering, Harbin Institute of Technology, Harbin, China; Qingdao University of Technology, Qingdao, China,

5. Professor, School of Civil Engineering, Qingdao University of Technology, Qingdao, China,

Abstract

The application of waste rubber for soil improvement is feasible, and the static and dynamic properties of rubber-reinforced soils have been extensively studied. However, the mechanical properties of frozen rubber-reinforced expansive soils have not been effectively studied due to the complexity of multiphase media under the action of multiple fields, and no applicable constitutive models describe them. In this paper, the stress-strain relationship model for frozen rubber-reinforced expansive soils is investigated over a range of strain rates from 0.18% to 0.3% and the following conclusions were obtained: (1) The structural model of the frozen rubber-reinforced expansive soil can be considered a ternary medium model that consists of elasto-brittle bonding elements, elasto-plastic friction elements and elastic friction elements. (2) The stress-strain relationship can be divided into three stages: linear elastic stage, elasto-plastic stage and strain softening (RC ≤ 15%) or hardening (RC = 20%) stage. (3) The rubber content has a greater influence on the stress-strain relationship. When the rubber content reaches 20%, the expression of the stress-strain curve changes from strain softening to strain hardening, at which time the rubber dominates. (4) The maximum shear strength of frozen rubber-reinforced expansive soil is obtained at 10% rubber content.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3