Formation and evolution of water menisci in unsaturated granular media

Author:

LOURENçO S.D.N.,GALLIPOLI D.,AUGARDE C.E.,TOLL D.G.,FISHER P.C.,CONGREVE A.

Abstract

Loose particles in moist granular materials, such as unsaturated soils, are held together by capillary forces acting at the interparticle contacts. The magnitude of these capillary forces depends on the surface tension and on the radius of curvature of the menisci, which in turn depends on the contact angle of the air/water interface against the surface of the solid particles. Menisci are usually assumed to be predominantly concave on the side of the air with negative water pressure (relative to the atmosphere). Evidence for this comes from direct observations at the millimetre scale or from theoretical assumptions. This note presents data from environmental scanning electron microscopy of particles at the micrometre scale that contradict this assumption and show for the first time that, for a given water content, the contact angle between air/water interfaces and grains can give rise to a variety of meniscus shapes, with curvatures not all concave on the side of air. It was found that the curvature of water menisci, in both idealised and natural granular materials with variable particle sizes, shapes and nature, could vary along the border of a single meniscus or differ from one point to another separated at the micrometre scale, and is also dependent on the nature of materials and wetting history. Menisci can have both predominantly convex shapes (corresponding to compressive capillary pressure) and predominantly concave shapes (corresponding to tensile capillary water pressure). These observations confirm the importance of surface tension in the air/water interfaces (often also referred to as ‘contractile skin') in holding particles together.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3