Prediction of oedometer terminal densities through a memory-enhanced cyclic model for sand

Author:

Liu H. Y.1,Pisanò F.1ORCID

Affiliation:

1. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands.

Abstract

Predicting the cyclic response of soils is still challenging in many geotechnical applications. In this area, the continual efforts on the constitutive modelling of cyclic sand behaviour demand new and reliable dataset for model validation – even more so for loading conditions involving numerous loading cycles (‘high-cyclic’ loading). This paper concerns the recent memory-enhanced bounding surface formulation by Liu et al. as a suitable platform to reproduce the high-cyclic response of sands. New evidence of its suitability is provided based on the recent dataset published by Park and Santamarina, comprising the results of high-cyclic oedometer tests at varying initial/loading conditions. Model simulations show satisfactory agreement with experimental data, and prove the ability of the model to predict ‘terminal densities’ under confined cyclic compression.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3