3D FE simulation of PISA monopile field tests at Dunkirk using SANISAND-MS

Author:

Pisanò F.12,Del Brocco I.3,Ho H. M.4,Brasile S.3

Affiliation:

1. Norwegian Geotechnical Institute, Boston, USA.

2. Delft University of Technology, Netherlands.

3. Seequent, The Bentley Subsurface Company, Netherlands.

4. Seequent, The Bentley Subsurface Company, Singapore.

Abstract

This paper presents an investigation into the suitability of the SANISAND-MS model for the three-dimensional finite-element (3D FE) simulation of cyclic monopile behaviour in sandy soils. In addition to previous work on the subject, the primary focus of this study is to further assess the model's capability to reproduce the accumulation of permanent deflection/tilt under cyclic lateral load histories. To this end, experimental data from the PISA field campaign are employed, particularly those emerged from the medium-scale cyclic tests conducted at the Dunkirk site in France. The methodology adopted herein involves calibrating the SANISAND-MS model's parameters to align with 3D FE simulation of a selected monotonic pile test reported by the PISA team using a bounding surface plasticity model partly similar to SANISAND-MS. Subsequently, the soil parameters governing SANISAND-MS’ ratcheting response are calibrated using only minimal information from published PISA field data. While representing the first attempt to simulate the reference data set using a fully ‘implicit’ 3D FE approach, this paper offers novel insights into calibrating and using advanced cyclic models for monopile analysis and design – particularly, with regard to the quantitative influence of pile installation effects and sand's microstructural evolution under drained cyclic loading.

Publisher

Emerald

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3