The mechanics of rigid irregular particles subject to uniaxial compression

Author:

CAVARRETTA I.,O'SULLIVAN C.

Abstract

Single-particle compression tests, in which an individual sand grain is vertically compressed between two rigid horizontal platens, are often used in particle-scale soil mechanics studies. They are useful index tests to examine the susceptibility of a given sand to particle breakage; they provide information for calibration of particulate discrete-element models that capture crushing; and they can give information on size–strength relationships. The test is conceptually simple, but the response of an irregular particle in these compression tests is not straightforward. During compression the particle can rotate. Both horizontal and vertical forces are induced at the particle–platen contacts, and so there may be frictional sliding at the contact points at the same time as, or prior to, compression of the bulk particle. Asperities can yield, changing the particle geometry. The variation in the response mechanism during compression leads to a load–deformation response that is not always easy to interpret. This paper describes two relatively simple analytical studies of an irregular particle in a particle compression test. The susceptibility of the particle to rotation under the applied compressive force is shown to depend on the particle geometry and the particle–platen friction. The rotation of the particle is shown to induce a kinematic degradation or reduction in the effective stiffness of the system, and the system stiffness depends on the particle size. Frictional sliding at the contact points will also cause a reduction in stiffness. These observations may have implications not only for the test itself, but also for the response of irregular particles participating in the strong force chains in stressed granular materials.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference35 articles.

1. Introduction to Computational Granular Mechanics

2. Micro- and macro-mechanical behaviour of DEM crushable materials

3. Cavarretta I. The influence of particle characteristics on the engineering behaviour of granular materials. PhD thesis, 2009, Department of Civil and Environmental Engineering, Imperial College London, UK.

4. The influence of particle characteristics on the behaviour of coarse grained soils

5. Discrete element simulation of crushable soil

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3