Centrifuge modelling and analysis of site liquefaction subjected to biaxial dynamic excitations

Author:

El Shafee O.1,Abdoun T.1,Zeghal M.1

Affiliation:

1. Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.

Abstract

The paper presents a series of centrifuge tests simulating a level site consisting of granular soil deposits subjected to various biaxial and uniaxial base excitations. The tests were conducted at RPI NEES centrifuge facility to assess the dynamic response characteristics of level deposits under multidirectional shaking. Synthetic sinusoidal waves were used as base excitations to test loose models under biaxial and uniaxial shaking. Dense arrays of accelerometers were used to monitor the deposit response along with pore water pressure transducers. Two uniaxial tests and one biaxial shaking test were conducted on three similar soil models to study the impact of multidirectional shaking on the generation of soil liquefaction. The two uniaxial shaking tests consisted of: (a) a test with input energy content using an Arias intensity similar to that of the biaxial input shaking and (b) a test with 10% increase in one of the components of the biaxial shake amplitude, as commonly done in practice for uniaxial simulation of multidirectional field shaking. The observed acceleration and pore pressure are used along with non-parametric identification procedures to estimate the corresponding dynamic shear stress–strain histories. The measured results along with the stress and strain histories obtained are used for two purposes: first, to shed light on the properties of liquefaction occurring through the stratum under uniaxial shaking; second, to show the difference in soil behaviour when it is subjected to biaxial shaking. The latter purpose is evident in the strain energy generated in the biaxial test compared to that of equivalent and traditional uniaxial tests.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3