Discrete particle translation gradient concept to expose strain localisation in sheared granular materials using 3D experimental kinematic measurements

Author:

Druckrey A. M.1,Alshibli K. A.2ORCID,Al-Raoush R. I.3

Affiliation:

1. VPD-Machine Performance Analysis, Caterpillar Inc., Peoria, IL, USA.

2. Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA.

3. Department of Civil and Architectural Engineering, Qatar University, Doha, Qatar

Abstract

It is well known that the constitutive behaviour of granular materials is influenced by strain localisation into zones of intensive shearing, known as shear bands. The failure mode of specimens tested under axisymmetric triaxial compression is commonly manifested through single or multiple shear bands, or diffuse bifurcation (bulging). The ability to monitor and detect the evolution of strain localisation has been enhanced by measuring particle kinematics using discrete-element methods or three-dimensional imaging techniques such as X-ray computed tomography. However, conventional particle kinematic techniques cannot expose intricate localised shearing during the hardening, before the peak principal stress ratio. This paper presents the concept of particle translation gradient to expose strain localisation in granular materials using experimental measurements of particle translation in three dimensions. Individual silica sand particles were identified and tracked through multiple strains and particles’ translations were calculated. Each particle's neighbouring particles were identified and translation fields for each of the neighbouring particles were calculated. The second-order norms between a particle translation vector and the neighbouring particles’ translation vectors were averaged, resulting in a relative translation value for each particle. The translation gradient concept is effective in uncovering the onset of strain localisation within sheared granular materials.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3