Complex poly(lactic acid)-based biomaterial for urinary catheters: I. Influence of AgNP on properties

Author:

Darie-Niţă Raluca N.1,Munteanu Bogdan S.2,Tudorachi Niţă1,Lipşa Rodica1,Stoleru Elena1,Spiridon Iuliana1,Vasile Cornelia1

Affiliation:

1. ‘Petru Poni’ Institute of Macromolecular Chemistry, Iași, Romania

2. Faculty of Physics, ‘Al. I. Cuza’ University, Iași, Romania

Abstract

The present study focused on the development of biocompatible antimicrobial/antioxidant biodegradable bionanocomposite renewable resources based on poly(lactic acid) (PLA) plasticised with epoxidised soybean oil. To the main PLA matrix hydrolysed collagen (HC) (to enhance biocompatibility), vitamin E (as antioxidant agent) and silver (Ag) nanoparticles (NPs) (for imparting antimicrobial properties for medical applications and also for active packaging) were incorporated. The blends were produced by using the classical technological flow of melt processing. The presence of the additives in the PLA matrix improved the processability and flexibility and slightly decreased the thermal properties. The specific interactions of silver NPs with the other components of nanocomposites, mainly with HC protein and vitamin E (by ionic and other types of secondary bonds), led to a better HC and vitamin E dispersion in the samples with a higher silver content (1·5%), which further caused the enhancement of the mechanical properties for high silver NP concentration. Therefore, the silver NPs were successfully embedded into the polymer matrix. The aim of this research was to improve the flexibility, biocompatibility and functionality of PLA and to obtain bionanocomposites destined for medical applications such as catheters. This first part of research deals with mechanical and thermal characterisation correlated with morphological features.

Publisher

Thomas Telford Ltd.

Subject

General Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3