Tribological and Dynamical Mechanical Behavior of Prototyped PLA-Based Polymers

Author:

Nedelcu DumitruORCID,Mazurchevici Simona-NicoletaORCID,Popa Ramona-Iuliana,Lohan Nicoleta-MonicaORCID,Maldonado-Cortés DemófiloORCID,Carausu Constantin

Abstract

It is essential to combine current state-of-the-art technologies such as additive manufacturing with current ecological needs. Due to the increasing demand for non-toxic biodegradable materials and products, human society has been searching for new materials. Consequently, it is compulsory to identify the qualities of these materials and their behavior when subjected to various external factors, to find their optimal solutions for application in various fields. This paper refers to the biodegradable Polylactic acid (PLA)-based filament (commercially known as Extrudr BDP (Biodegradable Plastic) Flax) compared with the biodegradable composite material PLA-lignin filament whose constituent’s trade name is Arboblend V2 Nature as a lignin base material and reinforcement with Extrudr BDP Pearl, a PLA based polymer, 3D printed by Fused Deposition Modeling technology. Certain mechanical properties (tensile strength, bending strength and DMA—Dynamic Mechanical Analysis) were also determined. The tribology behavior (friction coefficient and wear), the structure and the chemical composition of the biodegradable materials were investigated by SEM—Scanning Electron Microscopy, EDX—Energy Dispersive X-Ray Analysis, XRD—X-Ray Diffraction Analysis, FTIR—Fourier Transform Infrared Spectrometer and TGA—Thermogravimetric Analysis. The paper also refers to the influence of technological parameters on the 3D printed filaments made of Extrudr BDP Flax and the optimization those of technological parameters. The thermal behavior during the heating of the sample was analyzed by Differential scanning calorimetry (DSC). As a result of the carried-out research, we intend to recommend these biodegradable materials as possible substituents for plastics in as many fields of activity as possible.

Publisher

MDPI AG

Subject

General Materials Science

Reference36 articles.

1. Handbook of Bioplastics and Biocomposites Engineering Applications;Pilla,2011

2. Tecnaro Websitehttp://www.tecnaro.de/en/arboblend-arbofill-arboform/

3. Extrudr Websitehttps://www.extrudr.com//

4. Navigating through the Selection of 3D Printing Materials: Know Your Strengthshttps://3dprint.com/42417/3d-printing-material-strengths/

5. Filament Properties Tablehttps://www.simplify3d.com/support/materials-guide/properties-table/

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3