Frequency dependence of acoustic emission with particle interaction and failure process in dry sands during triaxial compression

Author:

Lin Wenli1,Liu Ang2,Mao Wuwei3,Koseki Junichi4

Affiliation:

1. School of Transportation, Southeast University, Nanjing, P. R. China; also Department of Civil Engineering, University of Tokyo, Tokyo, Japan.

2. Department of Geological Engineering, Nanjing Tech University, Nanjing, P. R. China; also Nanjing Geotechnical Engineering Institute, Nanjing, P. R. China.

3. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, P. R. China.

4. Department of Civil Engineering, University of Tokyo, Tokyo, Japan

Abstract

To investigate the behaviour of sands at the particle-scale during shear failure, a series of triaxial compression tests was conducted on dry sands with varying confining stresses and relative densities. These tests were complemented by acoustic emission (AE) monitoring to analyse the frequency-dependent AE signals and characterise particle interactions in terms of crushing (>100 kHz) and rearrangement (<100 kHz). The results reveal a linear relationship between the relative breakage index (Br) and the logarithm of cumulative high-frequency AE hits, regardless of the relative density. With this, particle crushing, as well as particle rearrangement, is demonstrated to occur throughout the entire shearing. Particle crushing increases more rapidly to prevail from the very beginning to the general yield, thereafter at a slower increasing rate to become less predominant. Its evolution in the post-peak regime is related to the failure pattern, which accumulates at a constant and most rapid rate when the specimen is ‘barrelling’; however, it decays rapidly in the presence of shear banding and eventually reaches an equilibrium state with particle rearrangement once the critical stress state is attained. Accordingly, two types of approximate evolution trends are suggested to estimate particle crushing upon shearing depending on the failure patterns.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3