Mathematical modelling of alluvial rivers: reality and myth. Part 2: Special issues

Author:

Cao Z.1,Carling P. A.2

Affiliation:

1. Institute of Hydraulic Research, Tianjin University, China; presently Department of Geography, University of Southampton

2. Department of Geography, University of Southampton

Abstract

The last half a century has seen more and more developments and applications of mathematical models for fluvial flow, sediment transport and morphological evolution. However, the quality of this modelling practice has emerged as a crucial issue for concern, which is widely viewed as the key that could unlock the full potential of computational fluvial hydraulics. The major factors affecting the modelling quality comprise: (a) poor assumptions in model formulations; (b) simplified numerical solution procedure; (c) the implementation of sediment relationships of questionable validity; and (d) the problematic use of model calibration and verification as assertions of model veracity. An overview of mathematical models for alluvial rivers is provided in this and the companion paper ‘Part 1: General review’. This paper is the second part, dealing with three special issues of mathematical river models. First, turbulence closure models are highlighted, particularly with respect to the role of sediment in modulating turbulence and its implications for adapting turbulence closure models for fluvial sediment-laden flows. Second, the bottom boundary conditions are discussed in detail as one of the main sources of model uncertainty. And third, the commonly used calibration and verification/validation methodology in mathematical river modelling is addressed. It is argued that model calibration can be subjective, verification is impossible because models are not closed systems, and validation does not necessarily establish model truth. Confirmation of observations by models only supports model probability, rather than demonstrating model veracity. It is vital for model developers and end-users to keep aware of what mathematical river models can realistically reflect, and therefore avoid misleading decision-making. Additionally, some strategies are proposed which can improve the practice of mathematical river modelling.

Publisher

Thomas Telford Ltd.

Subject

Ocean Engineering,Energy Engineering and Power Technology,Fuel Technology,Water Science and Technology,Civil and Structural Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3