Mathematical modelling of alluvial rivers: reality and myth. Part 1: General review

Author:

Cao Z.1,Carling P. A.2

Affiliation:

1. Institute of Hydraulic Research, Tianjin University, China; Presently, Department of Geography, University of Southampton

2. Department of Geography, University of Southampton

Abstract

Mathematical modelling fluvial flow, sediment transport and morphological evolution started half a century ago and, to date, a variety of mathematical models have been developed and are in widespread use. However, the quality of mathematical river modelling remains uncertain because of: (a) poor assumptions in model formulations; (b) simplified numerical solution procedure; (c) the implementation of sediment relationships of questionable validity; and (d) the problematic use of model calibration and verification as assertions of model veracity. An overview of mathematical models for alluvial rivers is provided in this and the companion paper ‘Part 2: Special issues’. This paper is the first part, providing a general review of mathematical river models. The issues addressed comprise what have been obvious since the very beginning of mathematical river modelling and are still open, and also the pertinent components that pose challenges to model developers and end-users pursuing refined modelling practice. In particular the simplified mass conservation equations, asynchronous solution procedures, sediment transport functions, movable-bed resistance, numerical difficulty for strong hyperbolic equations, and representation of movable and complex geometry are discussed. A test example is provided to demonstrate the impacts of simplified mass conservation equations and an asynchronous solution procedure in comparison with those of largely tuned friction factors. It is concluded that mathematical models for fluvial flow–sediment–morphology systems are far from being mature, and that considerable expertise, physical insight and experience are vital for meaningful solutions to be acquired and for the limitations of modelling outputs to be properly identified, interpreted and assessed.

Publisher

Thomas Telford Ltd.

Subject

Ocean Engineering,Energy Engineering and Power Technology,Fuel Technology,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3