Influence of the mix composition on the thixotropy of 3D printable mortars

Author:

Baz Bilal12,Remond Sébastien3,Aouad Georges4

Affiliation:

1. PhD student, Faculty of Engineering, University of Balamand, UOB, Al Koura, Lebanon

2. IMT Lille Douai, LGCgE – GCE, Douai, France (corresponding author: )

3. Professor, University Orléans, University Tours, INSA CVL, LaMé, EA, France

4. Professor, Faculty of Engineering, University of Balamand, UOB, Al Koura, Lebanon

Abstract

Digital fabrication of concrete elements requires a better understanding of the rheological behaviour of the cementitious material used. Fresh concrete is known to be a thixotropic material having time-dependent characteristics. Moreover, fresh mortars used in three-dimensional (3D) printing should maintain a sufficient shear stress to avoid any deformation or failure during printing. This paper concentrates on the experimental investigation of the buildability properties of different printable materials, on the basis of shear stress, measured using the Fall cone test. The effect of different constituents such as high-range water reducer, viscosity-modifying agent, limestone filler and water content on the evolution of the yield stress in mortars, derived from the shear stress, are studied experimentally and discussed in detail. Accordingly, the change of variables induces a quasi-linear relationship with the growth of the structuration rate and structural build-up (Athix) of mortars, which corresponds to the variation of the yield stress with time. These findings enable the use of the Athix concept and the proposed curves for designing new printable mixes that better suit the buildability properties of large-scale 3D printed structures.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3