Study on the post-fire mechanical properties of lightweight 3D printed concrete containing expanded perlite as partial replacement of natural sand

Author:

Azimi Zahir1,Mousavi Moein2,Bengar Habib Akbarzadeh2,Javadi Akbar A.3

Affiliation:

1. Department of Civil Engineering, Sharif University of Technology, Tehran, Iran

2. Department of Civil Engineering, University of Mazandaran, Babolsar, Iran

3. Department of Engineering, University of Exeter, Exeter, UK

Abstract

Along with the rise in construction with 3D printing technology, 3D printed (3DP) structures also require weight reduction similar to conventional reinforcement concrete (RC) structures. In addition, the behaviour of this type of structure against fire needs to be investigated. The number of printed layers and the time gap between layers for the 3DP specimens were among the variables examined in the tests. The test results demonstrated that as the replacement percentage of natural sand (NS) with expanded perlite (EP) increased, at 25% volume of replacement the interlayer bond strength increased on average by 18.6%, while at the highest replacement level of 75%, decreased on average by 5.8%. Additionally, by incorporation of EP the compressive and flexural strengths of 3DP specimens declined averagely from 9% to 29.7%, and 39.3% to 49.3%, respectively. As the replacement level of NS increased, residual compressive and flexural strengths increased after exposure to 800 °C. Furthermore, it was demonstrated that exposure to high temperature had the least effect on interlayer bond strength, whereas it significantly reduced the compressive and flexural strength. The results showed that, increasing the time gap between layers reduced interlayer bond strength and flexural strength while negligibly affected compressive strength.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3