Polycarboxylate/nanosilica-modified quaternary cement formulations – enhancements and limitations

Author:

Papatzani Styliani12ORCID,Paine Kevin3ORCID

Affiliation:

1. Hellenic Ministry of Culture, General Directorate of Restoration of Medieval and Post-medieval Monuments, Athens, Greece

2. BRE Centre for Innovative Construction Materials, University of Bath, Bath, UK (corresponding author: )

3. BRE Centre for Innovative Construction Materials, University of Bath, Bath, UK

Abstract

The effect of polycarboxylate/nanosilica (nS) particles in quaternary cement formulations comprising Portland cement (PC), limestone powder (LS) and fly ash (FA) was investigated for the first time. The reference formulation contained 60% PC, 20% LS and 20% FA by mass of binder in an effort to minimise clinker and maximise the other constituents. nS particles were characterised by way of transmission and X-ray scanning electron microscopy (SEM). The nS was added at 0·3 or 0·6% by mass as a partial replacement for PC and different water-to-binder (w/b) ratios were explored. Compressive strength tests and thermal gravimetric analyses (TGA) performed at day 7, 28 and 56 testified to pozzolanic behaviour. Results suggest a mechanism of ‘de-activation’ of some FA particles with age. A new ratio: (compressive strength in MPa)/(calcium hydroxide content detected by TGA) was introduced, correlating microscale characteristics (hydration products) and macroscale performance (delivered compressive strengths). Back-scattered SEM images confirmed the calcium–silicate–hydrate (C–S–H) network formation, the presence of reacted/unreacted FA particles and the availability of calcium hydroxide for delayed hydration reactions. Tests on mortars also confirmed the enhancement offered by nS addition. The lower bound nS addition was determined to be 0·6% by mass of binder for pastes and 0·5% for mortars.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3