Effects of nanosilica on the calcium silicate hydrates in Portland cement–fly ash systems

Author:

Calabria-Holley Juliana1,Paine Kevin2,Papatzani Styliani3

Affiliation:

1. Research associate, Department of Architecture and Civil Engineering, University of Bath, Bath, UK

2. Senior lecturer, Department of Architecture and Civil Engineering, University of Bath, Bath, UK

3. Research student, Department of Architecture and Civil Engineering, University of Bath, Bath, UK

Abstract

Cementitious materials have a complex chemistry and naturally form nanostructures in the hydration process, a network of calcium silicate hydrates. It is considered that nanoparticles such as nanosilica could act as a pozzolanic material as well as a seeding agent for nucleation and acceleration of the formation of the calcium silicate hydrate network. This work evaluates the effect of nanosilica on the calcium silicate hydrate network and microstructure of hardened ternary, quaternary and quinary system Portland cement based pastes. The quinary system, containing Portland cement, limestone, fly ash, microsilica and nanosilica, and ternary combinations (Portland cement, limestone and fly ash) showed mean calcium/silicon atomic ratios of the calcium silicate hydrate gel in the 28 d old hardened paste of 1·2 and 2·3 respectively. Fourier transform infrared spectroscopy results show the presence of the bridging silicate tetrahedra (Q2) characteristic of a peak at around 980 cm−1 and a shoulder at around 1060 cm−1 in the calcium silicate hydrate gel network of the ternary, quaternary and quinary combinations; these bands are thus more pronounced for the nanosilica-enhanced formulations. The sample obtained in the presence of microsilica and nanosilica (quinary combination) showed evidence of a more intricate calcium silicate hydrate gel network (bridging tetrahedra) characteristic of a honeycomb-like structure opposed to the ternary combination (control sample).

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3