The Moses effect enables remote control of self-propulsion of a diamagnetic rotator

Author:

Vilk Alla1ORCID,Legchenkova Irina1ORCID,Frenkel Mark1ORCID,Shoval Shraga1ORCID,Bormashenko Edward1ORCID

Affiliation:

1. Chemical Engineering, Biotechnology and Materials Department, Engineering Faculty, Ariel University, Ariel, Israel

Abstract

The experimental possibility of driving a floating self-propelled rotator by using the Moses effect is demonstrated. A steady magnetic field with a magnitude on the order of B ≅ 0·5 T formed the near-surface dip with a depth of c. 30 μm and lateral dimension of 5 mm, which attracted the floating, millimeter-scaled rotator, made from a polymer tubing filled by camphor and driven by the soluto-capillary Marangoni flows. The Marangoni flows driving the rotator are due to the dissolution of camphor. The Moses effect did not influence the angular velocity of the rotator. The characteristic time span of the rotation was established on the order of a dozen of hours. The longer rotators decrease their initial angular velocity slower. The qualitative analysis of the energy dissipation under rotation is provided. The model is qualitatively supported by the experimental data. The rotator may be exploited as a robotic propulsion unit and also for micro-generation of electrical power.

Publisher

Thomas Telford Ltd.

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3