Microfluidic Devices Developed for and Inspired by Thermotaxis and Chemotaxis

Author:

Karbalaei Alireza,Cho Hyoung

Abstract

Taxis has been reported in many cells and microorganisms, due to their tendency to migrate toward favorable physical situations and avoid damage and death. Thermotaxis and chemotaxis are two of the major types of taxis that naturally occur on a daily basis. Understanding the details of the thermo- and chemotactic behavioral response of cells and microorganisms is necessary to reveal the body function, diagnosing diseases and developing therapeutic treatments. Considering the length-scale and range of effectiveness of these phenomena, advances in microfluidics have facilitated taxis experiments and enhanced the precision of controlling and capturing microscale samples. Microfabrication of fluidic chips could bridge the gap between in vitro and in situ biological assays, specifically in taxis experiments. Numerous efforts have been made to develop, fabricate and implement novel microchips to conduct taxis experiments and increase the accuracy of the results. The concepts originated from thermo- and chemotaxis, inspired novel ideas applicable to microfluidics as well, more specifically, thermocapillarity and chemocapillarity (or solutocapillarity) for the manipulation of single- and multi-phase fluid flows in microscale and fluidic control elements such as valves, pumps, mixers, traps, etc. This paper starts with a brief biological overview of the concept of thermo- and chemotaxis followed by the most recent developments in microchips used for thermo- and chemotaxis experiments. The last section of this review focuses on the microfluidic devices inspired by the concept of thermo- and chemotaxis. Various microfluidic devices that have either been used for, or inspired by thermo- and chemotaxis are reviewed categorically.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference169 articles.

1. How animals use their environment: a new look at kinesis

2. Diversity at its best: bacterial taxis

3. Viral Tropism

4. The Orientation of Animals;Fraenkel,1961

5. Conceptual Problems with Kinesis and Taxis;Dunn;Biol. Chemotactic Response,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3