Affiliation:
1. Civil Engineering Materials, Institute for Resilient Infrastructure, School of Civil Engineering, University of Leeds, Leeds, UK (corresponding author: )
2. Institute for Resilient Infrastructure, School of Civil Engineering, University of Leeds, Leeds, UK
Abstract
The global cement industry is responsible for 7% of anthropogenic carbon dioxide emissions and, as such, has a vital role to play in the transition to a low carbon dioxide economy. In recent years, this has been achieved by technological advances and increased use of supplementary cementitious materials, but the authors have recently shown that there are other means of achieving comparable carbon dioxide savings, for example, by reducing workability. However, price remains a considerable barrier to the widespread implementation of low carbon dioxide concrete. Using the same model for concrete mix design as was used to determine embodied carbon dioxide (ECD), variations in the cost of the components of concrete have now been considered. Considering 24 different mix designs, each spanning a range of characteristic strengths from 20 to 100 MPa, measures to reduce the carbon dioxide footprint were also found to reduce the material cost of the concrete. As such, it may be considered that the construction industry is already encouraged to reduce its ‘carbon footprint’. However, the concept of the carbon footprint was then considered in a more nuanced fashion, considering the ECD per unit strength. On such a basis, the cheapest mixes did not have the lowest ECD. Therefore, the impact of levying a charge on the carbon footprint was considered. To ensure low carbon dioxide concrete is also the cheapest, carbon dioxide emissions would have to be priced approximately one to two orders of magnitude higher than current market value. This would become the dominant factor in construction, with serious consequences for the industry. Furthermore, such charges may pose ethical problems, being viewed as a ‘licence to pollute’ and therefore undermining society's efforts to reduce the carbon dioxide emissions of the construction industry.
Subject
General Materials Science,Building and Construction,Civil and Structural Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献