Multi-objective optimization of sustainable cement-zeolite improved sand based on life cycle assessment and artificial intelligence

Author:

Nasrollahpour Sepideh,Tanhadoust Amin,Kaur Brar Satinder,MolaAbasi Hossein,Nehdi Moncef L.ORCID,Ataee OmolbaninORCID

Abstract

Background Cement-zeolite improved sand can be used in diverse civil engineering applications. However, earlier research has not duly optimized its production process to attain best mechanical strength, lowest cost, and least environmental impact. This study proposes a multi-objective optimization approach using back-propagation neural network (BPNN) to predict the mechanical strength, along with an adaptive geometry estimation-based multi-objective evolutionary algorithm (AGE-MOEA) to identify the best parameters for cement-zeolite-improved sand, filling a long-lasting research gap. Methods A collection of unconfined compression tests was used to evaluate cemented sand specimens treated with stabilizers including portland cement (at dosages of 2, 4, 6, 8, and 10%) and six dosages of natural zeolite as partial replacement for cement (0, 10, 30, 50, 70, and 90%) at different curing times of 7, 28, and 90 days. The study further conducts a detailed analysis of life cycle assessment (LCA) to show how partial zeolite replacement for cement impacts the environment. Through a tuning process, the BPNN model found the optimal architecture and accurately predicted the unconfined compressive strength of cement-zeolite improved sand systems. This allowed the AGE-MOEA to optimize zeolite and cement dosages, density, curing time, and environmental impact. Results The results of this study reveal that the optimal range of zeolite was between 30-45%, which not only increased cemented sand strength, but also reduced the cost and environmental impact. It is also shown that increasing the zeolite replacement to 25-30% can increase the ultimate strength of cemented sand, yet exceeding this limit can cause the strength to decrease. Conclusions Zeolite has the potential to serve as an alternative for cement in applications that involve cemented sand, while still achieving mechanical strength performance, which is comparable or even superior. From an LCA standpoint, using zeolite as partial cement replacement in soil improvement projects is a promising alternative.

Publisher

F1000 Research Ltd

Reference56 articles.

1. Sustainable geotechnical design.;D Holt;GeoFlorida 2010 Adv. Anal. Model. Des.,2010

2. Low plasticity clay stabilized with cement and zeolite: An experimental and environmental impact study.;H MolaAbasi;Resour. Conserv. Recycl.,2022

3. Effect of EPS beads in lightening a typical zeolite and cement-treated sand.;A Khajeh;Bull. Eng. Geol. Environ.,2021

4. Key parameters for strength control of artificially cemented soils.;N Consoli;J. Geotech. Geoenviron. Eng.,2007

5. Key parameter for tensile and compressive strength of fibre-reinforced soil–lime mixtures.;N Consoli;Geosynth. Int.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3