Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH)

Author:

BUI H.H.,FUKAGAWA R.,SAKO K.,WELLS J.C.

Abstract

Most slope stability analyses have employed limit equilibrium methods (LEMs) or the finite-element method (FEM) as the standard approach. However, slope instability is often accompanied by discontinuous failure of the soil, which cannot be modelled by either LEMs or FEM. To overcome this limitation, this paper presents an extension of the smoothed particle hydrodynamics (SPH) method to evaluate the stability of a slope, and to simulate the post-failure behaviour of soil. For the slope stability analysis, the shear strength reduction technique with a modified failure criterion for distinguishing convergent from non-convergent solutions is applied to estimate the safety factor of a slope, and the critical slip surface is determined from a contour plot of accumulated plastic strain. To take the pore water pressure into account, a new SPH formulation for soil motion is developed. It is suggested that this equation can be applied to further developments of SPH for saturated soil. As an application of the proposed method, several smoothed particle slope stability analyses and corresponding slope failure simulations are presented, and compared with other solutions. The results show good agreements with other methods in terms of the safety factor and the critical slip surface. As compared with such traditional methods, however, an advantage of SPH is that it can simulate large deformation and post-failure of soil, and can thereby treat a wide range of applications in computational geomechanics, especially those that include large deformation and failure of geomaterials.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3