Predicting the Deformation of a Slope Using a Random Coefficient Panel Data Model

Author:

Yuan Zhenxia12,Bian Yadong123,Liu Weijian1,Qi Fuzhou1,Ma Haohao1,Zheng Sen4,Meng Zhenzhu5

Affiliation:

1. School of Architecture and Civil Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

2. Henan Environmental Geotechnical Engineering and Underground Engineering Disaster Control Engineering Research Center, Zhengzhou 450007, China

3. School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, China

4. Laboratory of Hydraulic Engineering, School of Civil Engineering, 1015 Lausanne, Switzerland

5. School of Water Conservancy and Environment Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

Abstract

Engineering constructions in coastal areas not only affect existing landslides, but also induce new landslides. Variation of the water level makes the coastal area a geological hazard-prone. Prediction of the slope displacement based on monitoring data plays an important role in early warning of potential landslide and slope failure, and supports the risk management of hazards. Given the complex characteristic of the slope deformation, we proposed a prediction model using random coefficient model under the frame of panel data analysis, so as to take the correlation among monitoring points into consideration. In addition, we classified the monitoring data using Gaussian mixture model, to take the temporal-spatial characteristics into consideration. Monitoring data of Guobu slope was used to validate the model. Results indicated that the proposed model have a better performance in prediction accuracy. We also compared the proposed model with the BP neural network model and temporal – temperature model, and found that the prediction accuracy of the proposed model is better than those of the two control models.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3