Undrained behaviour of granular material and the role of fabric in isotropic and K0 consolidations: DEM approach

Author:

Nguyen H. B. K.1,Rahman M. M.12,Fourie A. B.3

Affiliation:

1. School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, Australia.

2. Natural and Built Environments Research Centre (NBERC), University of South Australia, Mawson Lakes, SA, Australia.

3. School of Civil, Environmental and Mining Engineering, University of Western Australia, Crawley, WA, Australia.

Abstract

The behaviour of granular material was investigated by simulating an undrained triaxial compression test for three-dimensional assembly of ellipsoid particles over a wide range of void ratio, e, and mean confining stress, p′. The assembly was either isotropically consolidated or K0 consolidated prior to undrained shearing up to 30% axial strain to reach steady-state conditions. A unique steady-state line was obtained, irrespective of the consolidation path. The micro-mechanical quantities, such as coordination number and von Mises fabric in terms of second invariant of deviatoric fabric, FvM, also reached steady-state values. The normalised anisotropic fabric variable, A, and the trace of the joint stress–fabric tensor, KF, evolved during undrained simulation and reached the steady-state value at the end of shearing. This forms a unique relationship in KF–p′–e space and the projection of this relationship in e–log(p′) space is the classical steady-state line. This underpins the concept of fabric evolution and steady-state fabric in anisotropic critical state theory. The relationships of state parameter, ψ, and stress ratio at instability, ηIS = (q/p′)IS, were dependent on consolidation path, and the difference was not related to coordination number, but to FvM. However, a new phenomenon was observed that stress ratio, η, at the end of K0 consolidation and ηIS may reach beyond the steady-state stress ratio, M. Experimental data are needed to verify this; until then such behaviour should be regarded as unproven.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3