A tracer microrheology for determination of viscoelasticity of dilute ovalbumin colloids

Author:

Bakhsh Ahmed1,Elobeid Tahra2,Avci Esra3,Demirci Mehmet4,Taylan Osman1,Ozmen Duygu3,Meral Raciye5,Yilmaz Mustafa Tahsin1

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

2. Human Nutrition Department, College of Health Sciences, QU Health, Qatar University, Doha, Qatar

3. Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yıldız Technical University, Istanbul, Turkey

4. Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkey

5. Department of Food Engineering, Faculty of Engineering-Architecture, Yuzuncu Yil University, Van, Turkey

Abstract

This study seems to be the first effort to determine the viscoelastic properties of dilute ovalbumin colloids using dynamic-light-scattering-based optical microrheology using carboxylated melamine microparticles as the tracer probe. A generalized form of the Stokes–Einstein equation constructed based on Laplace transformation of the mean square displacement, 〈Δr 2(t)〉, was employed to compute the viscoelastic moduli (storage modulus, G′, and loss modulus, G″). 〈Δr 2(t)〉 was determined to increase with time by reaching a maximum plateau at a time between 10−3 and 10−1 s with no further increase, revealing the elastic nature of dilute ovalbumin colloids within the given time. On the other hand, ovalbumin colloids exhibited different viscoelastic properties at two different frequency ranges. The measurements and interpretation of data revealed that the technique used seems to ensure a fast and effective method for measuring the viscoelastic properties of ovalbumin colloids at very low concentration levels.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3