Modelling helical screw piles in soft clay and design implications

Author:

Stanier Samuel A.1,Black Jonathan A.2,Hird Charles C.2

Affiliation:

1. Centre for Offshore Foundation Systems, University of Western Australia, Australia

2. Department of Civil and Structural Engineering, University of Sheffield, UK

Abstract

Helical screw piles are a popular solution for relatively low-capacity, removable or recyclable foundations supporting road and rail signage or similar light structures. When specifying a helical screw pile, a designer must choose the active length and the helical plate spacing ratio, which are governed by the number, spacing and size of the individual helices. This paper presents an investigation using transparent synthetic soil and particle image velocimetry to observe the failure of helical screw piles with helical plate spacing ratios of 1·5–3 and active lengths up to three times the diameter. For the geometries and properties examined, capacity is shown to be a function of active length and the dominant failure mechanism is characterised by the formation of a cylindrical failure surface. A simple analytical model is developed and used to assess the impact of different design methodologies on immediate displacements under loading. A traditional ‘permissible stress' method is shown to be conservative, whereas modern ‘partial factor' methods are more economical and lead to greater immediate displacements for a given design load. Designers using modern ‘partial factor' approaches, such as Eurocode 7, might benefit from specifying a helical plate spacing ratio of less than 1·5 to maximise the stiffness of the response to axial loading and minimise the immediate displacements experienced upon application of working loads.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference21 articles.

1. Gill D . Experimental and Theoretical Investigations of Pile and Penetrometer Installation in Clay. PhD thesis, 1999, Trinity College, Dublin, Ireland.

2. Full-field stress and strain measurements during pile installation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3