Field Experimental Study on the Uplift and Lateral Capacity of Deep Helical Anchors and Grouped Helical Anchors in Clays

Author:

Yuan Chi1ORCID,Hao Dongxue2,Ding Shijun3,Ding Mintao3

Affiliation:

1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 110124, China

2. Key Laboratory of Electric Power Infrastructure Safety Assessment and Disaster Prevention of Jilin Province, Northeast Electric Power University, Jilin 132012, China

3. China Electric Power Research Institute, Beijing 100055, China

Abstract

This research aims to investigate the bearing capability of deep helical anchors and grouped helical anchors under uplift or lateral loads using field experiments. Grouped helical anchors may serve as a viable alternative to traditional deep foundations, offering increased resistance against uplift and lateral forces. The study of group effect primarily focuses on vertically installed helical anchors, with few data available on various configurations of grouped helical anchors. This research includes a total of 12 single-helix anchors, 4 double-helix anchors, and 4 grouped helical anchors, with anchor plate diameters of 400 mm and maximum embedment depths of 7.4 m. There are two configurations of grouped helical anchors, each with different platforms. This article studies the effect of some factors, including the embedment depth, the number of anchor plates, the spacing between anchor shafts, the selection of failure criteria, and the group effect. The primary findings indicate that adding the anchor plates to single-helix anchors without extending the shaft length does not increase uplift or lateral capacity. In this soil condition, the group efficiency of double-helix anchors is higher than 1. By comparing the group efficiency and economy of the G1 and G2 grouped helical anchors, it is highly recommended to use the G2 configuration. The data obtained from this work may also serve as a valuable tool for validating numerical models used to analyze interactions among grouped helical anchors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3