Natural Language Processing Enhanced Qualitative Methods: An Opportunity to Improve Health Outcomes

Author:

Parker R. David1ORCID,Mancini Karen2,Abram Marissa D.3ORCID

Affiliation:

1. Division of Population Health Sciences, University of Alaska, Anchorage, AK, USA

2. College of Nursing & Public Health , Adelphi University, Garden City, NY, US

3. School of Nursing, Duke University, Durham, NC, US

Abstract

Background Electronic health systems contain large amounts of unstructured data (UD) which are often unanalyzed due to the time and costs involved. Unanalyzed data creates missed opportunities to improve health outcomes. Natural language processing (NLP) is the foundation of generative artificial intelligence (GAI), which is the basis for large language models, such as ChatGPT. NLP and GAI are machine learning methods that analyze large amounts of data in a short time at minimal cost. The ability of NLP to conduct qualitative analyses is increasing, yet the results can lack context and nuance in their findings, requiring human intervention. Methods Our study compared outcomes, time, and costs of a previously published qualitative study. Our approach partnered an NLP model and a qualitative researcher (NLP+). UD from behavioral health patients were analyzed using NLP and a Latent Dirichlet allocation to identify the topics using probability of word coherence scores. The topics were then analyzed by a qualitative researcher, translated into themes, and compared with the original findings. Results The NLP + method results aligned with the original, qualitative derived themes. Our model also identified two additional themes which were not originally detected. The NLP + method required 6 hours of labor, 3 minutes for transcription, and a transcription cost of $1.17. The original, qualitative researcher only method required more than 36 hours ($2,250) of time and $1,100 for transcription. Conclusions While natural language processing analyzes voluminous amounts of data in seconds, context and nuance in human language are regularly missed. Combining a qualitative researcher with NLP + could be deployed in many settings, reducing time and costs, and improving context. Until large language models are more prevalent, a human interaction can help translate the patient experience by contextualizing data rich in social determinant indicators which may otherwise go unanalyzed.

Publisher

SAGE Publications

Subject

Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3