Methods to Integrate Natural Language Processing Into Qualitative Research

Author:

Abram Marissa D.1,Mancini Karen T.1,Parker R. David2ORCID

Affiliation:

1. Adelphi University College of Nursing & Public Health, Long Island, NY, USA

2. College of Health, University of Alaska Anchorage, AK, USA

Abstract

Background: Qualitative methods analyze contextualized, unstructured data. These methods are time and cost intensive, often resulting in small sample sizes and yielding findings that are complicated to replicate. Integrating natural language processing (NLP) into a qualitative project can increase efficiency through time and cost savings; increase sample sizes; and allow for validation through replication. This study compared the findings, costs, and time spent between a traditional qualitative method (Investigator only) to a method pairing a qualitative investigator with an NLP function (Investigator +NLP). Methods: Using secondary data from a previously published study, the investigators designed an NLP process in Python to yield a corpus, keywords, keyword influence, and the primary topics. A qualitative researcher reviewed and interpreted the output. These findings were compared to the previous study results. Results: Using comparative review, our results closely matched the original findings. The NLP + Investigator method reduced the project time by a minimum of 120 hours and costs by $1,500. Discussion: Qualitative research can evolve by incorporating NLP methods. These methods can increase sample size, reduce project time, and significantly reduce costs. The results of an integrated NLP process create a corpus and code which can be reviewed and verified, thus allowing a replicable, qualitative study. New data can be added over time and analyzed using the same interpretation and identification. Off the shelf qualitative software may be easier to use, but it can be expensive and may not offer a tailored approach or easily interpretable outcomes which further benefits researchers.

Publisher

SAGE Publications

Subject

Education

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3