Diagnostic performance of virtual fractional flow reserve derived from routine coronary angiography using segmentation free reduced order (1-dimensional) flow modelling

Author:

Mohee Kevin1ORCID,Mynard Jonathan P2345,Dhunnoo Gauravsingh1,Davies Rhodri1,Nithiarasu Perumal6,Halcox Julian P7,Obaid Daniel R7

Affiliation:

1. Department of Cardiology, Swansea Bay University Health Board, Morriston Hospital, Swansea, UK

2. Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia

3. Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia

4. Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia

5. Department of Cardiology, The Royal Children's Hospital, Parkville, VIC, Australia

6. Swansea University School of Engineering, Bay Campus, Swansea, UK

7. Swansea University Medical School, Swansea, UK

Abstract

Introduction Fractional flow reserve (FFR) improves assessment of the physiological significance of coronary lesions compared with conventional angiography. However, it is an invasive investigation. We tested the performance of a virtual FFR (1D-vFFR) using routine angiographic images and a rapidly performed reduced order computational model. Methods Quantitative coronary angiography (QCA) was performed in 102 with coronary lesions assessed by invasive FFR. A 1D-vFFR for each lesion was created using reduced order (one-dimensional) computational flow modelling derived from conventional angiographic images and patient specific estimates of coronary flow. The diagnostic accuracy of 1D-vFFR and QCA derived stenosis was compared against the gold standard of invasive FFR using area under the receiver operator characteristic curve (AUC). Results QCA revealed the mean coronary stenosis diameter was 44% ± 12% and lesion length 13 ± 7 mm. Following angiography calculation of the 1DvFFR took less than one minute. Coronary stenosis (QCA) had a significant but weak correlation with FFR (r = −0.2, p = 0.04) and poor diagnostic performance to identify lesions with FFR <0.80 (AUC 0.39, p = 0.09), (sensitivity – 58% and specificity – 26% at a QCA stenosis of 50%). In contrast, 1D-vFFR had a better correlation with FFR (r = 0.32, p = 0.01) and significantly better diagnostic performance (AUC 0.67, p = 0.007), (sensitivity – 92% and specificity - 29% at a 1D-vFFR of 0.7). Conclusions 1D-vFFR improves the determination of functionally significant coronary lesions compared with conventional angiography without requiring a pressure-wire or hyperaemia induction. It is fast enough to influence immediate clinical decision-making but requires further clinical evaluation.

Publisher

SAGE Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3