Toward the Relational Management of Educational Measurement Data

Author:

Chung Gregory1

Affiliation:

1. University of California, Los Angeles

Abstract

Background Historically, significant advances in scientific understanding have followed advances in measurement and observation. As the resolving power of an instrument increased, so have gains in the understanding of the phenomena being observed. Modern interactive systems are potentially the new “microscopes” when they are instrumented to record fine-grained observations of what students do in an online task. Advances in the conceptualization, design, and analyses of such interaction data enable the discovery of learning patterns and can power new applications. One application, personalization, is one of 14 engineering Grand Challenges identified by the National Academy of Engineering (2008). Purpose This article examines three levels of data available in online systems that can be used to understand student performance. Empirical research is reviewed to examine three fundamental questions: To what extent does students’ online behavior (a) relate to their cognitive processing, and to what extent can student behavior (b) be used to model their problem solving process and (c) be used diagnostically to reveal understandings and misconceptions? Participants The reviewed studies involved participants from college and K12 settings. Research Design The reviewed studies all focused on learning processes and outcomes. Nearly all studies had high frequency process-tracing data such as concurrent think-alouds, moment-to-moment telemetry, or both. Participants interacted with an online task on an academic subject. The task typically spanned one or a few class periods, and the studies collectively examined relations among students’ online behavior, cognitive processes (via think-alouds), and external measures of learning. Data Collection and Analysis In the reviewed studies, students’ online behavior was captured by instrumenting the system to capture and log interaction events. The more sophisticated approaches used a telemetry design based on the presumed cognitive processing occurring in the system. Findings In general, measures derived from students’ online behavior can be used (a) to decide when to intervene to influence learning processes (e.g., increased help seeking) and outcomes (e.g., improved course grades) and (b) as proxy measures of cognitive processing, understanding, and misconceptions. Conclusions In the coming years, multiple levels of data will be fused to better understand the student, including static data such as demographics, low-frequency data such as interactions within a learning management system, and high frequency data such as moment-to-moment interactions in a digital app. As education enters the era of big data and transmedia-based learning, data of and for an individual will power new applications to realize the promise of personalized instruction.

Publisher

SAGE Publications

Subject

Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3