Flexible Modelling in Survival Analysis. Structuring Biological Complexity from the Information Provided by Tumor Markers

Author:

Biganzoli E.1,Boracchi P.2,Daidone M.G3,Gion M.4,Marubini E.12

Affiliation:

1. Division of Medical Statistics and Biometry, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano

2. Institute of Medical Statistics and Biometry, Università degli Studi di Milano, Milano

3. U.O. Determinazioni Biomolecolari nella Prognosi e Terapia dei Tumori, Department of Experimental Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano

4. Centro Regionale Indicatori Biochimici di Tumore, Ospedale Civile, Venezia - Italy

Abstract

The aim of the present article is to introduce and discuss the problem of optimal modelling of the prognostic information provided by putative prognostic variables, possibly measured on a quantitative scale. A number of methodological aspects will be treated, with particular reference to the role of spline functions and artificial neural networks, which will be discussed in the context of the analysis of survival data. The problem of the evaluation and the choice of the optimal statistical models will be examined, with particular attention to the critical aspects related to the definition of prognostic indexes on the basis of the results of the selected models. Clinical examples in breast cancer on the evaluation of the prognostic impact of several tumor markers are provided. This paper is addressed to all researchers who are interested in the evaluation of the prognostic role of tumor markers, therefore we will stress the necessity of integrating the methodologies of biological, clinical and statistical research in the assessment of prognosis.

Publisher

SAGE Publications

Subject

Cancer Research,Clinical Biochemistry,Oncology,Pathology and Forensic Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3